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Abstract

Purpose – Usually, people’s interests do not match perfectly. So when several people need to make a joint
decision, they need to compromise. The more people one has to coordinate the decision with, the fewer chances
that each person’s preferenceswill be properly taken into account. Therefore, when a large group of people need
to make a decision, it is desirable to make sure that this decision can be reached by dividing all the people into
small-size groups so that this decision can reach a compromise between the members of each group. The
study’s objective is to analyze when such a compromise is possible.
Design/methodology/approach – In this paper, the authors use a recent mathematical result about convex
sets to analyze this problem and to come up with an optimal size of such groups.
Findings – The authors find the smallest group size for which a joint decision is possible. Specifically, the
authors show that in situations where each alternative is characterized by n quantities, it is possible to have a
joint decision if the participants are divided into groups of size n – and, in general, no such decision is possible if
the participants are divided into groups of size n – 1.
Originality/value –Themain novelty of this paper is that, first, it formulates the problem,which, to the best of the
authors’ knowledge, was never formulated in thisway before, and, second, that it provides a solution to this problem.
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1. Formulation of the problem
Need for joint decision-making. In many practical situations, people need to come up
with a joint decision. For example, a country may need to select financial measures to boost
the economy and decrease unemployment, a city may need to improve its public
transportation system, etc.

To make a joint decision, we need to select an objective function. In each
decision-making process, there are some numerical characteristics x1, . . ., xn that describe
possible decisions. For example, in a country the quality of a decision can be characterized by
the resulting increase in GDP x1, the resulting decrease in unemployment x2, etc. For a city-
wide public transportation project, x1 can be the decrease in average commute time, x2 can be
the decrease in pollution caused by cars, etc.

In general, everyone agrees that each of these characteristics should be as large as
possible. The problem is that it is usually impossible to increase all of them. For example, one
way to boost the country’s gross domestic product (GDP) would be to outsource low-paying
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jobs to other countries and save money, but this may increase unemployment. In general, it is
not possible to maximize two different objective functions: usually, when wemaximize one of
them, this does not make other objective functions maximum. Thus, when we make a
decision, we need to select a single objective function u(x1, . . ., xn) that we should maximize.

Possibility of linearization. Inmany real-life situations, we are talking about decisions
that, while important, do not drastically change our lives. For example, while it is desirable to
have a better public transportation system, the resulting average decrease of, e.g. 10 min per
day of commute time does not lead to a radical change in people’s lives and habits. In such
situations, the changes xi are reasonably small. When the changes xi are small, terms which
are quadratic (or even higher order) in terms of xi are much smaller than xi and can, thus, be
safely ignored in comparison with terms which are linear in xi. Thus, we can expand the
desired objective function in Taylor series and only keep linear terms in this expansion,
i.e. consider objective functions of the type

uðxÞ ¼ c0 þ c1$x1 þ � � � þ cn$xn: (1)

As we have mentioned, for each of the characteristics xi, the larger its value, the better. This
means that increasing xi should lead to a larger value of this objective function, i.e. that all
coefficients ci should be positive.

Let us simplify. If we take formula (1) literally, this would mean that to make a joint
decision, we need to select n þ 1 parameters c0, c1, . . ., cn. The more parameters we need to
select, the more complicated the selection task. We can make this task somewhat easier if we
take into account that maximizing a function u(x1, . . ., xn) is equivalent to maximizing a
“shifted” function u(x1, . . ., xn)� c0. Indeed, which of the two numbers is largerwill not change
if we subtract the same constant from both numbers. The shifted objective function has a
simplified form

c1$x1 þ � � � þ cn$xn;

where we only have n coefficients to determine.

We can simplify the situation even further if we take into account that which of the two
numbers is larger will not change if we divide both numbers by the same positive constant.
Thus, for each constant C, maximizing a function u(x1, . . ., xn) is equivalent to maximizing a
“re-scaled” function u(x1, . . ., xn)/C. If we take C5 c1þ � � � þ cn, then we arrive at the problem
of maximizing the expression

Uðx1; . . . ; xnÞ ¼ a1$x1 þ � � � þ an$xn; (2)

where the values

ai¼def ciPn
j¼1

cj

satisfy the condition

a1 þ � � � þ an ¼ 1: (3)

We will call the expression (2) a normalized utility function.

Definition 1. Let a positive integer n be fixed; we will call it the number of characteristics. By
a normalized utility function, we mean an expression (2), for which the
coefficients ai satisfy condition (3).
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Because of condition (2), to describe a normalized utility function, we need to select n � 1
coefficients: e.g. once we have selected a1, . . ., an�1, then we can use equation (3) to determine
an as an 5 1 � (a1 þ � � � þ an�1).

Whatwemeanbya compromise. Suppose that we have a group of p participantswith
normalized utility functions U1(x), . . ., Up(x). Based on these normalized utility functions, we
need to form a new normalized utility function that the group will use to make a decision.
A natural requirement is that if all p participants prefer an alternative x to an alternative y,
then the group should also prefer x to y. Thus, we arrive at the following definition.

Definition 2. We say that a normalized utility function U(x) is a compromise between p
normalized utility functions U1(x), . . ., Up(x) when for every two alternative x
and y, the following condition holds:

(1) if Ui(x) ≥ Ui(y) for all i 5 1, . . ., p, then we should have U(x) ≥ U(y).

It is desirable to minimize compromising. The more people one has to coordinate a
decision with, the fewer chances that each person’s preferences will be properly taken into
account. Therefore, when a large group of people need to make a decision, it is desirable to
make sure that this decision can be reached by dividing all the people into small-size groups
so that this decision can reach a compromise between the members of each group.

Resulting problem. In view of the above, it is important to find the smallest possible
group size for which such a joint decision is always possible.

What we do in this paper. In this paper, we provide a solution to this problem. It turns
out that this smallest size is n.

2. Our solution

Proposition 1.

(1) Each group of N $ n normalized utility functions can be partitioned into subgroups of
size n so that there exists a normalized utility function which is a compromise for each of
these subgroups.

(2) For each n, there exists an integer N and a group of N $ (n � 1) normalized utility
functions for which, no matter how we partition it into subgroups of size n � 1, there
does not exist a normalized utility function which is a compromise for each of these
subgroups.

3. Proof
Relation to convexity. Our proof is based on the notion of convexity; see, e.g. Rockafeller

(1997). For every finite set of points að1Þ ¼ a
ð1Þ
1 ; . . . ; a

ð1Þ
n

� �
, . . ., aðkÞ ¼ a

ðkÞ
1 ; . . . ; a

ðkÞ
n

� �
, by

their convex combination, we mean a point a 5 (a1, . . ., an) for which

a ¼ α1$a
ð1Þ þ � � � þ αk$a

ðkÞ

for some αj ≥ 0 for which α1 þ � � � þ αk 5 1, i.e. for which, for every i from 1 to n, we have

ai ¼ α1$a
ð1Þ
i þ � � � þ αk$a

ðkÞ
i :

The set of all convex combinations is known as the convex hull of the points a(1), . . ., a(k).

How to reach a
joint decision?

193



The relation between convexity and our problem is provided by the following lemma. To
formulate this lemma, wewill say that a normalized utility functionU(x)5 a1 $ x1þ � � � þ an $
xn is characterized by the point a 5 (a1, . . ., an).

Lemma. Let U0(x) be a normalized utility function characterized by a point a(0), and let
U1(x), . . ., Up(x) are normalized utility functions characterized points a(1), . . ., a(p).
Then, the following two conditions are equivalent to each other:

(1) U0(x) is a compromise between normalized utility functions U1(x), . . ., Up(x), and

(2) the point a(0) is a convex combination of the points a(1), . . ., a(p).

Proof of lemma. Let us first prove that if the point a(0) is a convex combination of the points
a(1), . . ., a(p), i.e. if

a
ð0Þ
i ¼ α1$a

ð1Þ
i þ � � � þ αp$a

ðpÞ
i (4)

for some non-negative coefficients αj that add up to 1, then U0(x) is a compromise between
normalized utility functions U1(x), . . ., Up(x).

Indeed, let x5 (x1, . . ., xn) and y5 (y1, . . ., yn) be two alternatives for whichUj(x)≥Uj(y) for
all i, i.e. for which

a
ðjÞ
1 $x1 þ � � � þ aðjÞn $xn ≥ a

ðjÞ
1 $y1 þ � � � þ aðjÞn $yn:

If wemultiply both sides of this inequality by a non-negative number αj≥ 0, we conclude that

αj$a
ðjÞ
1 $x1 þ � � � þ αj$a

ðjÞ
n $xn ≥αj$a

ðjÞ
1 $y1 þ � � � þ αj$a

ðjÞ
n $yn: (5)

Adding the inequalities (5) corresponding to j 5 1, . . ., p, we get

Xp
j¼1

αj$a
ðjÞ
1

 !
$x1 þ � � � þ

Xp
j¼1

αj$a
ðjÞ
n

 !
$xn ≥

Xp
j¼1

αj$a
ðjÞ
1

 !
$y1 þ � � � þ

Xp
j¼1

αj$a
ðjÞ
n

 !
$yn:

Taking into account formula (4), we conclude that

a
ð0Þ
1 $x1 þ � � � þ að0Þn $xn ≥ a

ð0Þ
1 $y1 þ � � � þ að0Þn $yn;

i.e. that U0(x) ≥ U0(y). So, U0(x) is indeed a compromise between the normalized utility
functions U1(x), . . ., Up(x).

Vice versa, let us prove that ifU0(x) is a compromise between normalized utility functions
U1(x), . . ., Up(x), then the point a(0) is a convex combination of the points a(1), . . ., a(p). Let us
prove this by contradiction. Let us assume that the point a(0) that satisfies condition (3) is not a
convex combination of the points a(1), . . ., a(p); in other words, the point a does not belong to
the convex hull of the points a(1), . . ., a(p). All the points a(0), a(1), . . ., a(p) satisfy condition
(3) and are, thus, located on a plane defined by this condition.

By the properties of convex sets, if two closed convex sets do not intersect, there exists a
separating plane. A single point is, of course, a convex set, so there exists a plane that
separates the point a(0) from the points a(1), . . ., a(p). If we connect all the points from this plane
to the point (0, . . ., 0), we get a plane passing through 0 that separates the point a from all the
points a(j). In general, such a plane has the form
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a1$x1 þ � � � þ an$xn ¼ 0

for some coefficients xi. For the points on two sides of this plane, the expression
a1 $ x1þ � � � þ an $ xn has different signs. Thus, the fact that the plane separates these points
means that for the point a(0) and for the points a(j), this expression has different signs.

If the sign is negative for a(0) and positive for all the points a(j) with j ≥ 1, then we have

Uj(x) > 0 for all j5 1, . . ., p andU0(x) < 0. Here,Uð 0!Þ ¼ 0, where we denoted 0
!¼defð0; . . . ; 0Þ.

Thus, we have UjðxÞ > Uj 0
!� �

for all j5 1, . . ., p but U0ðxÞ < U0 0
!� �

. This contradicts to

our assumption that U0(x) is a compromise between the normalized utility functions U1(x),
. . ., Up(x).

Similarly, if the sign is positive for a(0) and negative for all the points a(j) with j≥ 1, then we

have Uj 0
!� �

> UjðxÞ for all j5 1, . . ., p but U0 0
!� �

< U0ðxÞ, which also contradicts to our
assumption. Thus, the point a cannot be outside the convex hull, so it must be inside the
convex full. Lemma is proven.

Proving the first part of the proposition.Now that lemma is proven, let us show how
this lemma leads to the proof of the first part of our main result. As we have mentioned, the
utility functions of k5 N $ (dþ 1) people can be represented by k points (a1, . . ., an) from an
(n � 1)-dimensional space determined by condition (3). It is known that any group of N $
(d þ 1) points in a d-dimensional space can be partitioned into subsets of size d þ 1 so that
there is a point that belongs to the convex hull of all these subsets. This result was first proven
in Birch (1959) for dimension d5 2, then in Frick and Sober�on (2020) for all dimensions d; see
also B�ar�any (2022) for the general overview of this and related results. In our case, we have a
space of dimension d 5 n � 1, so the above result indeed implies the first part of our
proposition.

Proving the second part of the proposition.To prove this part, let us takeN5 n and
N $ (n � 1) 5 n $ (n � 1) people with the utility functions corresponding to the following
points:

(1) we have n � 1 people with utility function corresponding to a(1) 5 (1, 0, . . ., 0),

(2) we have n� 1 people with utility function corresponding to a(2) 5 (0, 1, 0, . . ., 0), . . .,

(3) for each i, we have n� 1 peoplewith utility function corresponding to a(i)5 (0, . . ., 0, 1,
0 . . ., 0), with 1 on i-th place,. . ., and

(4) we have n � 1 people with utility function corresponding to a(n) 5 (0, . . ., 0, 1).

Let us show that no matter how we partition them into groups of n� 1, there will be no point
common to the convex hulls of all these groups.

Suppose that we divide the original n $ (n� 1) points into n groups c1, . . ., cn each of which
contains n� 1 points. For each combination cj of n� 1 points, their convex hullCj is contained
in the linear space Lj generated by the corresponding vectors. So, if there is a point common to
all these convex hulls, this point should belong to the intersection L1 ∩ . . . ∩ Ln of the
corresponding linear spaces. Each of these linear spaces is a linear combination of some
collection of some points a(i). One can see the intersection L1∩ . . .∩Ln of these linear spaces is
a linear space generated by the intersection of these groups c1 ∩ . . . ∩ cn.

This intersection c1 ∩ . . . ∩ cn cannot contain the vector a
(1): indeed, this would imply that

the vector a(1) is contained in all n groups c1, . . ., cn that form this partition, and this cannot be
since we only have n � 1 such vectors. Similarly, this intersection cannot contain any of the
vectors a(i). Thus, this intersection c1 ∩ . . . ∩ cn is empty, and the linear space L1 ∩ . . . ∩ Ln
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generated by this intersection consists of the single point (0, . . ., 0). Since the intersection C1 ∩
. . . ∩ Cn of the convex hulls is contained in the intersection L1 ∩ . . . ∩ Ln of linear spaces, all
the elements of this intersection – i.e. all the points which are common to all convex hulls –
must be contained in the 1-element set {(0, . . ., 0)} – so this intersection should be either empty
or consists of this point (0, . . ., 0). However, all the elements in each convex hull satisfy
condition (3), but the point (0, . . ., 0) does not satisfy this condition. Thus, the intersection of
the convex hulls must be empty – which is exactly what we wanted to prove.

The second part of the Proposition is proven, and thus, the Proposition itself is proven.

4. Remaining open problem
In this paper, we simply prove the existence of the desired partition into small groups. It is
desirable to come up with an efficient algorithm for such a subdivision.
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